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��������� We study the “combinatorial anabelian geometry” that governs the rela-

tionship between the dual semi-graph of a pointed stable curve and various associated
profinite fundamental groups of the pointed stable curve. Although many results of

this type have been obtained previously in various particular situations of interest
under unnecessarily strong hypotheses, the goal of the present paper is to step back

from such “typical situations of interest” and instead to consider this topic in the

abstract — a point of view which allows one to prove results of this type in much
greater generality under very weak hypotheses.

Introduction

In this paper, we apply the language of anabelioids [cf. [Mzk5], [Mzk7]] to study
the “profinite combinatorial group theory” arising from the relationship between
the semi-graph of anabelioids associated to a pointed stable curve [i.e., a “semi-
graph of anabelioids of PSC-type” — cf. Definition 1.1, (i), below for more details]
and a certain associated profinite fundamental group [cf. Definition 1.1, (ii)]. In
particular, we show that:

(i) The cuspidal portion of the semi-graph may be recovered group-theoretical-
ly from the associated profinite fundamental group, together with certain
numerical information [roughly speaking, the number of cusps of the var-
ious finite étale coverings of the given semi-graph of anabelioids] — cf.
Theorem 1.6, (i).

(ii) The entire “semi-graph of anabelioids structure” may be recovered group-
theoretically from the associated profinite fundamental group, together
with a certain filtration [arising from this “semi-graph of anabelioids struc-
ture”] of the abelianizations of the various finite étale coverings of the given
semi-graph of anabelioids — cf. Theorem 1.6, (ii).
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Moreover, we show that from the point of view of “weights” [i.e., logarithms of
absolute values of eigenvalues of the action of the Frobenius element of the Galois
group of a finite field], the data necessary for (i) (respectively, (ii)) above may be
recovered from very weak assumptions concerning the “weights” — cf. Corollary
2.7, (i), (ii). In particular, [unlike the techniques of [Mzk4], Lemmas 1.3.9, 2.3,
for example] these very weak assumptions do not even require the existence of a
particular Frobenius element. Alternatively, when there are no cusps, the data
necessary for (ii) may be recovered from very weak assumptions concerning the l-
adic inertia action [cf. Corollary 2.7, (iii)] — i.e., one does not even need to consider
weights. This sort of result may be regarded as a strengthening of various results
to the effect that a curve has good reduction if and only if the l-adic inertia action
is trivial [cf., e.g., [Tama1], Theorem 0.8].

One consequence of this theory is the result [cf. Corollary 2.7, (iv)] that the
subgroup of the group of outer automorphisms of the associated fundamental group
consisting of the graphic outer automorphisms [i.e., the automorphisms that are
compatible with the “semi-graph of anabelioids structure”] is equal to its own com-
mensurator within the entire group of outer automorphisms. This result may be
regarded as a sort of “anabelian analogue” of a well-known “linear algebra fact”
concerning the general linear group [cf. Remark 2.7.1].

The original motivation for the development of the theory of the present paper
is as follows: Frequently, in discussions of the anabelian geometry of hyperbolic
curves, one finds it necessary to reconstruct the cusps [cf., e.g., [Naka1], Theorem
3.4; [Mzk4], Lemma 1.3.9; [Tama2], Lemma 2.3, Proposition 2.4] or the entire dual
semi-graph associated to a pointed stable curve [cf., e.g., [Mzk2], §1 – 5; [Mzk4],
Lemma 2.3] group-theoretically from some associated profinite fundamental group.
Moreover, although the techniques for doing this in various diverse situations are
quite similar and only require much weaker assumptions than the assumptions that
often hold in particular situations of interest, up till now, there was no unified
presentation or general results concerning this topic — only a collection of papers
covering various “particular situations of interest”. Thus, the goal of the present
paper is to prove results concerning this topic in maximum possible generality, in
the hope that this may prove useful in applications to situations not covered in
previous papers [cf., e.g., Corollaries 2.8, 2.9, 2.10; Remarks 2.8.1, 2.8.2].

The author would like to thank Akio Tamagawa for various helpful comments
concerning the material presented in this paper.
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Section 0: Notation and Conventions

Numbers:

The notation Q will be used to denote the field of rational numbers. The
notation Z ⊆ Q will be used to denote the set, group, or ring of rational integers.
The notation N ⊆ Z will be used to denote the submonoid of integers ≥ 0. If l is
a prime number, then the notation Ql (respectively, Zl) will be used to denote the
l-adic completion of Q (respectively, Z).

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let us
write

ZG(H) def= {g ∈ G | g · h = h · g for any h ∈ H}
for the centralizer of H in G;

NG(H) def= {g ∈ G | g ·H · g−1 = H}

for the normalizer of H in G; and

CG(H) def= {g ∈ G | (g ·H · g−1)
⋂
H has finite index in H, g ·H · g−1}

for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H) are
subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H). We shall say that H is centrally (respectively,
normally; commensurably) terminal in G if ZG(H) = H (respectively, NG(H) = H;
CG(H) = H).

We shall denote the group of automorphisms of G by Aut(G). Conjugation by
elements of G determines a homomorphism G → Aut(G) whose image consists of
the inner automorphisms of G. We shall denote by Out(G) the quotient of Aut(G)
by the [normal] subgroup consisting of the inner automorphisms.

Curves:

Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family of curves of
genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism of schemes
X → S whose geometric fibers are curves of genus g.
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Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall denote
the moduli stack of r-pointed stable curves of genus g (where we assume the points
to be unordered) by Mg,r [cf. [DM], [Knud] for an exposition of the theory of such
curves; strictly speaking, [Knud] treats the finite étale covering of Mg,r determined
by ordering the marked points]. The open substack Mg,r ⊆ Mg,r of smooth curves
will be referred to as the moduli stack of smooth r-pointed stable curves of genus g
or, alternatively, as the moduli stack of hyperbolic curves of type (g, r). The divisor
at infinity Mg,r\Mg,r of Mg,r determines a log structure on Mg,r; denote the
resulting log stack by Mlog

g,r.

A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X ↪→ Y → S as the composite of an
open immersion X ↪→ Y onto the complement Y \D of a relative divisor D ⊆ Y
which is finite étale over S of relative degree r, and a family Y → S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y,D) is unique up
to canonical isomorphism. (Indeed, when S is the spectrum of a field, this fact is
well-known from the elementary theory of algebraic curves. Next, we consider an
arbitrary connected normal S on which a prime l is invertible (which, by Zariski
localization, we may assume without loss of generality). Denote by S′ → S the finite
étale covering parametrizing orderings of the marked points and trivializations of
the l-torsion points of the Jacobian of Y . Note that S′ → S is independent of
the choice of (Y,D), since (by the normality of S), S′ may be constructed as the
normalization of S in the function field of S′ (which is independent of the choice
of (Y,D), since the restriction of (Y,D) to the generic point of S has already been
shown to be unique). Thus, the uniqueness of (Y,D) follows by considering the
classifying morphism (associated to (Y,D)) from S′ to the finite étale covering
of (Mg,r)Z[1/l] parametrizing orderings of the marked points and trivializations
of the l-torsion points of the Jacobian [since this covering is well-known to be a
scheme, for l sufficiently large].) We shall refer to Y (respectively, D; D; D) as the
compactification (respectively, divisor at infinity; divisor of cusps; divisor of marked
points) of X . A family of hyperbolic curves X → S is defined to be a morphism
X → S such that the restriction of this morphism to each connected component of
S is a family of hyperbolic curves of type (g, r) for some integers (g, r) as above.

Write
Cg,r → Mg,r

for the tautological curve over Mg,r; Dg,r ⊆ Mg,r for the corresponding tautological
divisor of marked points. The divisor given by the union of Dg,r with the inverse
image in Cg,r of the divisor at infinity of Mg,r determines a log structure on Cg,r;
denote the resulting log stack by Clog

g,r. Thus, we obtain a morphism of log stacks

Clog

g,r → Mlog

g,r
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which we refer to as the tautological log curve over Mlog

g,r. If Slog is any log scheme,
then we shall refer to a morphism

Clog → Slog

which is obtained as the pull-back of the tautological log curve via some [necessarily
uniquely determined — cf., e.g., [Mzk1], §3] classifying morphism Slog → Mlog

g,r as a
stable log curve. If C has no nodes, then we shall refer to Clog → Slog as a smooth
log curve.

If XK (respectively, YL) is a hyperbolic curve over a field K (respectively, L),
then we shall say that XK is isogenous to YL if there exists a hyperbolic curve ZM

over a field M together with finite étale morphisms ZM → XK , ZM → YL.
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Section 1: Criterion for Graphicity

In the present §1, we state and prove a criterion for an isomorphism between the
profinite fundamental groups of pointed stable curves to arise from an isomorphism
of [semi-]graphs of groups. To do this, we shall find it convenient to use the language
of anabelioids [cf. [Mzk5]], together with the theory of semi-graphs of anabelioids
of [Mzk7].

Let Σ be a nonempty set of prime numbers. Denote by

ẐΣ

the pro-Σ completion of Z. Let G be a semi-graph of anabelioids [cf. [Mzk7],
Definition 2.1], whose underlying semi-graph we denote by G. Thus, for each vertex
v (respectively, edge e) of G, we are given a connected anabelioid [i.e., a Galois
category] Gv (respectively, Ge), and for each branch b of an edge e abutting to a
vertex v, we are given a morphism of anabelioids Ge → Gv.

Definition 1.1.

(i) We shall refer to G as being of pro-Σ PSC-type [i.e., “pointed stable curve
type”] if it arises as the pro-Σ completion [cf. [Mzk7], Definition 2.9, (ii)] of the semi-
graph of anabelioids determined by the “dual semi-graph of profinite groups with
compact structure” [i.e., the object denoted “Gc

X” in the discussion of pointed stable
curves in [Mzk4], Appendix] of a pointed stable curve over an algebraically closed
field whose characteristic �∈ Σ. [Thus, the vertices (respectively, closed edges; open
edges) of G correspond to the irreducible components (respectively, nodes; cusps [i.e.,
marked points]) of the pointed stable curve.] We shall refer to G as being of PSC-
type if it is of pro-Σ PSC-type for some nonempty set of prime numbers Σ. If G is a
semi-graph of anabelioids of PSC-type, then we shall refer to the open (respectively,
closed) edges of the underlying semi-graph G of G as the cusps (respectively, nodes)
of G [or G] and write r(G) (respectively, n(G)) for the cardinality of the set of cusps
(respectively, nodes) of G; if r(G) = 0 (respectively, n(G) = 0), then we shall say
that G is noncuspidal (respectively, nonnodal). Also, we shall write i(G) for the
cardinality of the set of vertices of G.

(ii) Suppose that G is of pro-Σ PSC-type. Then we shall denote by

ΠG

and refer to as the PSC-fundamental group of G the maximal pro-Σ quotient of the
profinite fundamental group of G [cf. [Mzk7], the discussion following Definition
2.2]; we shall refer to a finite étale covering of G that arises from an open subgroup of
ΠG as a [finite étale] ΠG-covering of G. A vertex (respectively, edge) of G determines,
up to conjugation, a closed subgroup of ΠG ; we shall refer to such subgroups as
verticial (respectively, edge-like). An edge-like subgroup that arises from a closed
edge will be referred to as nodal; an edge-like subgroup that arises from an open
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edge will be referred to as cuspidal. Write MG for the abelianization of ΠG. Then
the cuspidal, edge-like, and verticial subgroups of ΠG determine submodules

M cusp
G ⊆M edge

G ⊆Mvert
G ⊆MG

of MG , which we shall refer to as cuspidal, edge-like, and verticial, respectively. We
shall refer to any cyclic finite étale covering of G which arises from a finite quotient
MG � Q that factors through MG/M

cusp
G and induces a surjection M edge

G /M cusp
G �

Q as module-wise nodal. If one forms the quotient of ΠG by the closed normal
subgroup generated by the cuspidal [cf. the first “�” in the following display],
edge-like [cf. the composite of the first two “�’s” in the following display], or
verticial [cf. the composite of the three “�’s” in the following display] subgroups,
then one obtains arrows as follows:

ΠG � Πcpt
G � Πunr

G � Πgrph
G

We shall refer to Πcpt
G (respectively, Πunr

G ; Πgrph
G ) as the compactified (respectively,

unramified; graph-theoretic) quotient of ΠG . We shall refer to a ΠG-covering of G
that arises from an open subgroup of Πcpt

G (respectively, Πunr
G ; Πgrph

G ) as a Πcpt
G -

(respectively, Πunr
G -; Πgrph

G -) covering of G. We shall refer to the images of the ver-
ticial (respectively, verticial; edge-like) subgroups of ΠG in Πcpt

G (respectively, Πunr
G ;

Πcpt
G ) as the compactified verticial (respectively, unramified verticial; compactified

edge-like) subgroups. If the abelianization of every unramified verticial subgroup
of Πunr

G is free of rank ≥ 2 over ẐΣ, then we shall say that G is sturdy.

Remark 1.1.1. It is immediate from the definitions that any connected finite
étale covering of a semi-graph of anabelioids of PSC-type is again a semi-graph of
anabelioids of PSC-type.

Remark 1.1.2. Note that if G is a semi-graph of anabelioids of pro-Σ PSC-type,
with associated PSC-fundamental group ΠG , then Σ may be recovered either from
ΠG or from any verticial or edge-like subgroup of ΠG as the set of prime numbers
that occur as factors of orders of finite quotients of ΠG or a verticial or edge-like
subgroup of ΠG .

Remark 1.1.3. It is immediate [cf. the discussion in [Mzk4], Appendix] that ΠG
is the pro-Σ fundamental group of some hyperbolic curve over an algebraically closed
field of characteristic �∈ Σ [or, alternatively, of some hyperbolic Riemann surface of
finite type], and that every open subgroup of an edge-like (respectively, verticial)
subgroup of ΠG is isomorphic to ẐΣ (respectively, nonabelian). In particular, [by
[Naka2], Corollary 1.3.4] ΠG is center-free [cf. also [Mzk4], Lemma 1.3.1, for the
case where Σ is the set of all prime numbers; the case of arbitrary Σ may be proven
similarly]. Moreover, G has cusps if and only if ΠG is a finitely generated, free pro-Σ
group. On the other hand, Πgrph

G is naturally isomorphic to the pro-Σ fundamental
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group of the underlying semi-graph G. In particular, Πgrph
G is a finitely generated,

free pro-Σ group of rank n(G) − i(G) + 1.

Remark 1.1.4. It is immediate from the well-known structure of fundamen-
tal groups of Riemann surfaces that, in the notation of Definition 1.1, (ii), the
ẐΣ-modules MG , MG/M

cusp
G [i.e., the abelianization of Πcpt

G ], MG/Mvert
G [i.e., the

abelianization of Πgrph
G ], Mvert

G /M edge
G [i.e., the direct sum, over the set of vertices

of G, of the abelianizations of the corresponding unramified verticial subgroups of
Πunr

G ] are all free and finitely generated over ẐΣ. That is to say, all of the subquo-
tients of the following filtration are free and finitely generated over ẐΣ:

M cusp
G ⊆M edge

G ⊆Mvert
G ⊆MG

Remark 1.1.5. From the point of view of Definition 1.1, (i), the condition that
a semi-graph of anabelioids G of PSC-type be sturdy corresponds to the condition
that every irreducible component of the pointed stable curve that gives rise to G be
of genus ≥ 2. [Indeed, this follows immediately from the well-known structure of
fundamental groups of Riemann surfaces.] In particular, one verifies immediately
that, even if G is not sturdy, there always exists a characteristic open subgroup
H ⊆ ΠG which satisfies the following property: Every G′ which arises as a ΠG-
covering G′ → G such that ΠG′ ⊆ H ⊆ ΠG is sturdy. In fact, [it is a routine exercise
to show that] one may even bound the index [ΠG : H] explicitly in terms of say, the
rank [over ẐΣ] of MG.

Remark 1.1.6. Suppose that G is sturdy. Then observe that the quotient
ΠG � Πcpt

G determines a new semi-graph of anabelioids G′ of PSC-type, which we
shall refer to as the compactification of G. That is to say, the underlying semi-graph
G′ of G′ is obtained from the underlying semi-graph G of G by omitting the cusps.
The anabelioids at the vertices and edges of G′ are then obtained from G as the
subcategories of the corresponding anabelioids of G determined by the quotients of
the corresponding verticial and edge-like subgroups of ΠG induced by the quotient
ΠG � Πcpt

G . Thus, it follows immediately that we obtain a natural isomorphism
Πcpt

G
∼→ ΠG′ .

Proposition 1.2. (Commensurable Terminality) Suppose that G is of PSC-
type, with associated PSC-fundamental group ΠG. For i = 1, 2, let Ai ⊆ ΠG be a
verticial (respectively, edge-like) subgroup of ΠG arising from a vertex vi (respec-
tively, an edge ei) of ΠG; write Bi for the image of Ai in Πunr

G . Then the following
hold.

(i) If A1

⋂
A2 is open in A1, then v1 = v2 (respectively, e1 = e2). In the non-

resp’d case, under the further assumption that G is sturdy, if B1

⋂
B2 is open in

B1, then v1 = v2.

(ii) The Ai are commensurably terminal [cf. §0] in ΠG. In the non-resp’d
case, under the further assumption that G is sturdy, the Bi are commensurably
terminal in Πunr

G .
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Proof. First, we observe that assertion (ii) follows formally from assertion (i) [cf.
the derivation of [Mzk7], Corollary 2.7, (i), from [Mzk7], Proposition 2.6]. Now the
proof of assertion (i) is entirely similar to the proof of [Mzk7], Proposition 2.6: That
is to say, upon translating the group-theory of ΠG into the language of finite étale
coverings of G and possibly replacing G by some finite étale covering of G [which
allows us, in particular, to replace the words “open in” in assertion (i) by the words
“equal to”], one sees that to prove assertions (i), (ii), it suffices to prove, under the
further assumption that G is sturdy [cf. Remark 1.1.5], that if v1 �= v2 (respectively,
e1 �= e2), then there exists a finite étale Πunr

G - (respectively, ΠG-) covering G′ → G
whose restriction to the anabelioid Gv2 (respectively, Ge2) is trivial [i.e., isomorphic
to a disjoint union of copies of Gv2 (respectively, Ge2)], but whose restriction to
the anabelioid Gv1 (respectively, Ge1) is nontrivial. But, in light of our assumption
that G is sturdy, one verifies immediately that by gluing together appropriate finite
étale coverings of the anabelioids Gv, Ge, one may construct a finite étale covering
G′ → G with the desired properties. �

Proposition 1.3. (Duality) Let G be a noncuspidal semi-graph of anabelioids
of PSC-type. Then the cup product in group cohomology

H1(ΠG, ẐΣ) ×H1(ΠG, ẐΣ) → H2(ΠG , ẐΣ) ∼= ẐΣ

determines a perfect pairing on MG ∼= Hom(H1(ΠG, ẐΣ), ẐΣ), well-defined up to
multiplication by a unit of ẐΣ. Moreover, relative to this perfect pairing, the sub-
modules M edge

G , Mvert
G of MG are mutual annihilators.

Proof. Since G is noncuspidal, it follows [cf. Remark 1.1.3] that ΠG is the pro-Σ
fundamental group of some compact Riemann surface, so the existence of a perfect
pairing as asserted follows from the well-known Poincaré duality of such a compact
Riemann surface. To see that the submodules M edge

G , Mvert
G of MG are mutual

annihilators, we reason as follows: Since the isomorphism class of G is manifestly
determined by purely combinatorial data, we may assume without loss of generality
[by possibly replacing G by the “pro-Σ′ completion” of G, for some subset Σ′ ⊆ Σ]
that G arises from a stable curve over a finite field k whose characteristic �∈ Σ. Write
q for the cardinality of k; Gk for the absolute Galois group of k. We shall say that an
action of Gk on a finitely generated, free ẐΣ-module is of weight w if the eigenvalues
of the Frobenius element ∈ Gk are algebraic integers all of whose complex absolute
values are equal to qw/2. Now one has a natural action of Gk on G [cf. Remark
2.5.1 below for a more detailed description of this action], and hence a natural
action on MG which preserves M edge

G , Mvert
G . By replacing k by a finite extension

of k, we may assume that Gk acts trivially on the underlying semi-graph G. Thus,
the action of Gk on MG/Mvert

G (respectively, M edge
G ) is trivial [cf. Remark 1.1.3]

(respectively, of weight 2). On the other hand, by the “Riemann hypothesis” for
abelian varieties over finite fields [cf., e.g., [Mumf], p. 206], it follows [cf. Remark
1.1.4] that the action of Gk on Mvert

G /M edge
G is of weight 1. Note, moreover, that the

action of Gk on H2(ΠG , ẐΣ) is of weight −2. [Indeed, this follows by considering
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the first Chern class [cf., e.g., [FK], Chapter II, Definition 1.2] of a line bundle
of degree one on some irreducible component of the given stable curve over k —
cf., e.g., [Mzk4], the proof of Lemma 2.6.] Thus, since the subquotients of the
filtration M edge

G ⊆Mvert
G ⊆MG are all free over ẐΣ, the fact that M edge

G and Mvert
G

are mutual annihilators follows immediately by consideration of the weights of the
modules involved. �

Remark 1.3.1. By Proposition 1.3 [applied to the semi-graph of anabelioids of
PSC-type G′ obtained by “compactifying” G — cf. Remark 1.1.6], it follows that
if G is a [not necessarily noncuspidal!] sturdy semi-graph of anabelioids of PSC-
type, then the ranks [over ẐΣ] of M edge

G /M cusp
G , MG/Mvert

G coincide. This implies
that the rank [over ẐΣ] of M cusp

G may be computed as the difference between the
ranks [over ẐΣ] of M edge

G , MG/Mvert
G . Moreover, it follows immediately from the

definitions that if G has cusps, then the rank of M cusp
G is equal to r(G) − 1. Also,

[again it follows immediately from the definitions that] G is noncuspidal if and only
if M cusp

G′ = 0 for all finite étale ΠG-coverings G′ → G. Thus, in summary, it follows
that one may compute r(G) as soon as one knows the difference between the ranks
[over ẐΣ] of M edge

G′ , MG′/Mvert
G′ for all finite étale ΠG-coverings G′ → G.

Definition 1.4. Suppose that G, H are of PSC-type; denote the respective
associated PSC-fundamental groups by ΠG , ΠH and the respective underlying semi-
graphs by G, H. Let

α : ΠG
∼→ ΠH; β : Πunr

G
∼→ Πunr

H

be isomorphisms of profinite groups.

(i) We shall say that α is graphic if it arises from an isomorphism of semi-graphs
of anabelioids G ∼→ H.

(ii) We shall say that α is numerically cuspidal if, for any pair of finite étale
coverings G′ → G, H′ → H which correspond via α, we have r(G′) = r(H′).

(iii) We shall say that α is graphically filtration-preserving (respectively, verti-
cially filtration-preserving; edge-wise filtration-preserving) if, for any pair of finite
étale coverings G′ → G, H′ → H which correspond via α, the isomorphism

MG′
∼→ MH′

induced by α induces an isomorphism between the respective verticial and edge-
like (respectively, verticial; edge-like) submodules. We shall say that β is verticially
filtration-preserving if, for any pair of finite étale coverings G′ → G, H′ → H which
correspond via β, the isomorphism

MG′/M edge
G′

∼→ MH′/M edge
H′

induced by β induces an isomorphism Mvert
G′ /M edge

G′
∼→ Mvert

H′ /M
edge
H′ .
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(iv) We shall say that α is group-theoretically cuspidal (respectively, group-
theoretically edge-like; group-theoretically verticial) if and only if it maps each cusp-
idal (respectively, edge-like; verticial) subgroup of ΠG isomorphically onto a cuspidal
(respectively, edge-like; verticial) subgroup of ΠH, and, moreover, every cuspidal
(respectively, edge-like; verticial) subgroup of ΠH arises in this fashion. We shall
say that β is group-theoretically verticial if and only if it maps each unramified
verticial subgroup of Πunr

G isomorphically onto an unramified verticial subgroup of
Πunr

H , and, moreover, every verticial subgroup of Πunr
H arises in this fashion.

(v) Let G′ → G be a Galois finite étale covering. Then we shall say that G′ → G
is cuspidally (respectively, nodally; verticially) purely totally ramified if there exists
a cusp e (respectively, node e; vertex v) of G such that G′ → G restricts to a trivial
covering over Ge′ (respectively, Ge′ ; Gv′) for all cusps e′ �= e (respectively, nodes
e′ �= e; vertices v′ �= v) of G and to a connected covering over Ge (respectively,
Ge; Gv). We shall say that G′ → G is cuspidally (respectively, nodally; verticially)
totally ramified if there exists a cusp e (respectively, node e; vertex v) of G such
that G′ → G restricts to a connected covering over Ge (respectively, Ge; Gv).

(vi) If A ⊆ ΠG is a closed subgroup, and A′ ⊆ A is an open subgroup of A, then
we shall say that the inclusion A′ ⊆ A descends to a finite étale covering G′ → G′′

if the arrow G′ → G′′ is a morphism of finite étale ΠG-coverings of G such that the
corresponding open subgroups ΠG′ ⊆ ΠG′′ ⊆ ΠG satisfy A ⊆ ΠG′′ , A

⋂
ΠG′ = A′,

[A : A′] = [ΠG′′ : ΠG′ ]. We shall use similar terminology when, in the preceding
sentence, “Π” is replaced by “Πunr”.

Remark 1.4.1. Thus, by Proposition 1.3, it follows that, if, in the notation of
Definition 1.4, G, H are noncuspidal, then the following three conditions on α are
equivalent: (a) α is graphically filtration-preserving; (b) α is verticially filtration-
preserving; (c) α is edge-wise filtration-preserving.

Remark 1.4.2. Let G′ → G be a Galois finite étale covering of degree a power
of l, where G is of pro-Σ PSC-type, Σ = {l}. Then one verifies immediately that
G′ → G is cuspidally purely totally ramified if and only if the equality

r(G′) = deg(G′/G) · (r(G) − 1) + 1

is satisfied. Similarly, if G′ → G is a finite étale Πunr
G -covering [so n(G′) = n(G) ·

deg(G′/G)], then one verifies immediately that G′ → G is verticially purely totally
ramified if and only if the equality

i(G′) = deg(G′/G) · (i(G) − 1) + 1

is satisfied. Also, we observe that this last equality is equivalent to the following
equality involving the expression “i(. . . ) − n(. . . )” [cf. Remark 1.1.3]:

i(G′) − n(G′) = deg(G′/G) · (i(G) − n(G) − 1) + 1
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Remark 1.4.3. Let G′ → G be as in Remark 1.4.2; assume further that this
covering is a cuspidally (respectively, nodally; verticially) totally ramified ΠG- (re-
spectively, ΠG-; Πunr

G -) covering, and that G is arbitrary (respectively, arbitrary;
sturdy). Let e (respectively, e; v) be a cusp (respectively, node; vertex) of G such
that G′ → G restricts to a connected covering of Ge (respectively, Ge; Gv). Then
observe that:

There exists a finite étale ΠG- (respectively, ΠG-; Πunr
G -) covering G′′ → G

such that: (a) G′′ → G is trivial over Ge (respectively, Ge; Gv); (b) the
subcovering G′′′ → G′′ of the composite covering G′′′ → G of the coverings
G′′ → G and G′ → G is cuspidally (respectively, nodally; verticially) purely
totally ramified.

Indeed, the construction of such a covering is immediate [cf. the proof of Proposition
1.2].

Remark 1.4.4. Let G′ → G be as in Remark 1.4.2; assume further that this
covering is cyclic, and that G is noncuspidal. Then it is immediate that G′ → G
is module-wise nodal if and only if it is nodally totally ramified. In particular, it
follows that:

(i) Any closed subgroup B ⊆ ΠG is contained in some nodal edge-like sub-
group if and only if, for every open normal subgroup B′ ⊆ B, the inclusion
B′ ⊆ B descends to a module-wise nodal finite étale covering.

(ii) A closed subgroup A ⊆ ΠG is a nodal edge-like subgroup of ΠG if and only
if it satisfies the condition of (i) above [i.e., where one takes “B” to be A],
and, moreover, is maximal among closed subgroups B ⊆ ΠG satisfying the
condition of (i).

Indeed, the necessity of (i) is immediate. The sufficiency of (i) follows by observing
that since the set of nodes of a finite étale covering of G is always finite, an exhaustive
collection of open normal subgroups of B thus determines — by considering the
nodes at which the “total ramification” occurs — [at least one] compatible system
of nodes of the finite étale ΠG-coverings of G; but this implies that B is contained
in some nodal edge-like subgroup. In light of (i), the necessity of (ii) is immediate
from the definitions and Proposition 1.2, (i) [which implies maximality], while the
sufficiency of (ii) follows immediately from the assumption of maximality.

Proposition 1.5. (Incidence Relations) We maintain the notation of Defi-
nition 1.4. Then the following hold.

(i) An edge-like subgroup of ΠG is cuspidal (respectively, not cuspidal) if
and only if it is contained in precisely one (respectively, precisely two) verticial
subgroup(s).
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(ii) α is graphic if and only if it is group-theoretically edge-like and
group-theoretically verticial. Moreover, in this case, α arises from a unique
isomorphism of semi-graphs of anabelioids G ∼→ H.

Proof. First, we consider assertion (i). Observe that it is immediate from the
definitions that a cuspidal (respectively, noncuspidal) edge-like subgroup of ΠG is
contained in at least one (respectively, at least two) verticial subgroup(s). To prove
that these lower bounds also serve as upper bounds, it suffices [by possibly replacing
G by a finite étale covering of G] to show that if e is a cuspidal (respectively, nodal)
edge of G that does not abut to a vertex v, then there exists a finite étale ΠG-covering
G′ → G which is trivial over Gv, but nontrivial over Ge. But this is immediate [cf.
the proof of Proposition 1.2, (i)].

Next, we consider assertion (ii). Necessity is immediate. To prove sufficiency,
we reason as follows: The assumption that α is group-theoretically edge-like and
group-theoretically verticial implies, by considering conjugacy classes of verticial and
edge-like subgroups [and applying Proposition 1.2, (i)], that α induces a bijection
between the vertices (respectively, edges) of the underlying semi-graphs G, H. By
assertion (i), this bijection maps cuspidal (respectively, nodal) edges to cuspidal
(respectively, nodal) edges and is compatible with the various “incidence relations”
that define the semi-graph structure [i.e., the data of which vertices an edge abuts
to]. Thus, α induces an isomorphism of semi-graphs G

∼→ H. Finally, by Proposition
1.2, (ii), one concludes that α arises from a unique isomorphism G ∼→ H, as desired.
�

Theorem 1.6. (Criterion for Graphicity) We maintain the notation of
Definition 1.4. Then the following hold.

(i) α is numerically cuspidal if and only if it is group-theoretically cus-
pidal.

(ii) α is graphic if and only if it is graphically filtration-preserving.

(iii) Assume that G, H are sturdy. Then β is verticially filtration-preser-
ving if and only if it is group-theoretically verticial.

Proof. First, we consider assertion (i). Sufficiency is immediate [cf. Proposition
1.2, (i)]. The proof of necessity is entirely similar to the latter half of the proof of
[Mzk4], Lemma 1.3.9: Let l ∈ Σ [where G, H are of pro-Σ PSC-type]. Since the
cuspidal edge-like subgroups may be recovered as the stabilizers of cusps of finite
étale coverings of G, H, it suffices to show that α induces a functorial bijection
between the sets of cusps of G, H. In particular, we may assume, without loss of
generality, that Σ = {l}.

Then given pairs of finite étale ΠG- or ΠH-coverings that correspond via α

G′′ → G′ → G; H′′ → H′ → H
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such that G′′ is Galois over G′, and H′′ is Galois over H′, it follows from the
assumption that α is numerically cuspidal that G′′ → G′ is cuspidally purely totally
ramified if and only if H′′ → H′ is [cf. Remark 1.4.2]. Now observe that the
cuspidal edge-like subgroups of ΠG (respectively, ΠH) are precisely the maximal
closed subgroups A such that, for every open normal subgroup A′ ⊆ A, the inclusion
A′ ⊆ A descends to a cuspidally purely totally ramified Galois finite étale covering.
Indeed, in light of Remark 1.4.3 [which implies that, in the preceding sentence,
one may remove the word “purely” without affecting the validity of the assertion
contained in this sentence], this follows by a similar argument to the argument
applied in the case of nodes in Remark 1.4.4. Thus, we thus conclude that α is
group-theoretically cuspidal, as desired.

Next, we consider assertion (ii). Necessity is immediate. To prove sufficiency,
let us first observe that by functoriality; Proposition 1.2, (ii); Proposition 1.5, (ii),
it follows that we may always replace G, H by finite étale ΠG- or ΠH-coverings that
correspond via α. In particular, by Remark 1.1.5, we may assume without loss
of generality that G, H are sturdy. Next, let us observe that by Proposition 1.3
[cf. Remark 1.3.1], the assumption that α is graphically filtration-preserving implies
that α is numerically cuspidal, hence [by assertion (i)] that α is group-theoretically
cuspidal. Thus, by replacing G, H by their respective compactifications [cf. Remark
1.1.6], and replacing α by the isomorphism induced by α between the respective
quotients ΠG � Πcpt

G , ΠH � Πcpt
H , we may assume, without loss of generality, that

G, H are noncuspidal and sturdy. Also, as in the proof of assertion (i), we may
assume that Σ = {l}. Now by Proposition 1.5, (ii), it suffices to prove that α is
group-theoretically edge-like and group-theoretically verticial. But by Remark 1.4.4,
the assumption that α is edge-wise filtration-preserving implies that α is group-
theoretically edge-like. In particular, α induces a verticially filtration-preserving
isomorphism Πunr

G
∼→ Πunr

H . Now to prove that α is group-theoretically verticial, it
suffices to prove [cf. the proof of assertion (i)] that α induces a functorial bijection
between the sets of vertices of G, H. Thus, to complete the proof of assertion (ii),
it suffices to prove that β is group-theoretically verticial, that is to say, it suffices to
verify assertion (iii).

Finally, we consider assertion (iii). Sufficiency is immediate. On the other
hand, necessity follows from Remark 1.4.2, by observing that the unramified verti-
cial subgroups are precisely the maximal closed subgroups A of Πunr

G or Πunr
H such

that, for every open normal subgroup A′ ⊆ A, the inclusion A′ ⊆ A descends to
a verticially purely totally ramified Galois finite étale covering. Indeed, in light
of Remark 1.4.3 [which implies that, in the preceding sentence, one may remove
the word “purely” without affecting the validity of the assertion contained in this
sentence], this follows by a similar argument to the argument applied in the case of
nodes in Remark 1.4.4. This completes the proof of assertion (ii). �

Remark 1.6.1. The essential content of Theorem 1.6, (i), is, in many respects,
similar to the essential content of [Tama2], Lemma 2.3 [cf. the use of this lemma
in [Tama2], Proposition 2.4].
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Section 2: The Group of Graphic Outer Automorphisms

In this §, we study the consequences of the theory of §1 for the group of
automorphisms of a semi-graph of anabelioids of PSC-type.

Let G be a semi-graph of anabelioids of pro-Σ PSC-type [with underlying semi-
graph G]. In the following discussion, G, G will remain fixed until further notice to
the contrary [in Corollary 2.7].

Denote by Aut(G) the group of automorphisms of the semi-graph of anabelioids
G. Here, we recall that an automorphism of a semi-graph of anabelioids consists of
an automorphism of the underlying semi-graph, together with a compatible system
of isomorphisms between the various anabelioids at each of the vertices and edges
of the underlying semi-graph, which are compatible with the various morphisms of
anabelioids associated to the branches of the underlying semi-graph — cf. [Mzk7],
Definition 2.1; [Mzk7], Remark 2.4.2. Then, by Proposition 1.5, (ii), we obtain an
injective homomorphism

Aut(G) ↪→ Out(ΠG)

whose image we shall denote by

Outgrph(ΠG) ⊆ Out(ΠG)

and refer to as the group of graphic outer automorphisms of ΠG . Since ΠG is topo-
logically finitely generated [cf. Remark 1.1.3], it follows that Out(ΠG) is equipped
with a natural profinite topology, which thus induces a natural topology on the sub-
group Outgrph(ΠG) ⊆ Out(ΠG), which is manifestly closed, by Proposition 1.5, (ii).
In particular, Aut(G) ∼= Outgrph(ΠG) is equipped with a natural profinite topology.

Since ΠG is center-free [cf. Remark 1.1.3], we have a natural exact sequence
1 → ΠG → Aut(ΠG) → Out(ΠG) → 1, which we may pull-back via Aut(G) ↪→
Out(ΠG) to obtain an exact sequence as follows:

1 → ΠG → ΠAut
G → Aut(G) → 1

If G′ → G is a sturdy [i.e., G′ is sturdy] finite étale ΠG-covering which arises from a
characteristic open subgroup ΠG′ ⊆ ΠG , then there is a natural action of ΠAut

G on
G′. In particular, we obtain, for every l ∈ Σ, a natural action of ΠAut

G on the free
Zl-module of rank one [i.e., since G′ is sturdy] H2(Πcpt

G′ ,Zl).

Lemma 2.1. (Construction of the Cyclotomic Character) This ac-
tion of ΠAut

G on H2(Πcpt
G′ ,Zl) factors through the quotient ΠAut

G � Aut(G), hence
determines a continuous homomorphism Aut(G) → Z×

l , whose inverse

χl : Aut(G) → Z×
l

we shall refer to as the pro-l cyclotomic character of Aut(G). Moreover, this
character is independent of the choice of sturdy ΠG-covering G′ → G.
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Proof. To verify the asserted independence of covering, it suffices to observe that
any two sturdy ΠG-coverings G′ → G, G′′ → G may be dominated by a third sturdy
ΠG-covering G′′′ → G, which induce isomorphisms of free Ql-modules of rank one

H2(Πcpt
G′ ,Zl) ⊗ Q → H2(Πcpt

G′′′ ,Zl) ⊗ Q; H2(Πcpt
G′′ ,Zl) ⊗ Q → H2(Πcpt

G′′′ ,Zl) ⊗ Q

which are compatible with the various actions by ΠAut
G .

To show that the action of ΠAut
G factors through Aut(G), we may assume

without loss of generality that Σ is the set of all primes. On the other hand, by
the independence of covering already verified, it follows that we may compute the
ΠAut

G -action in question by using a covering G′ → G of degree prime to l(l−1). Since
the action in question amounts to a continuous homomorphism ΠAut

G → Z×
l which

clearly factors through ΠAut
G /ΠG′ , the desired factorization follows from the fact

that [consideration of orders implies that] every homomorphism Gal(G′/G) → Z×
l

is trivial. �

Proposition 2.2. (The Double of a Semi-Graph of Anabelioids of PSC-
type) Suppose that r(G) �= 0. Let H be the semi-graph of anabelioids defined
as follows: The underlying semi-graph H is obtained by taking the disjoint union
of two copies of G and, for each cusp e of G abutting to a vertex v of G, replacing
the corresponding pairs of cusps lying in these two copies of G by a node [i.e., a
closed edge] that joins the pairs of vertices corresponding to v in these two copies.
We shall refer to the newly appended nodes as bridges. Away from the bridges,
we take the semi-graph of anabelioids structure of H to be the structure induced
by G, and, at each branch of a bridge of H, we take the semi-graph of anabelioids
structure of H to be the structure induced by G at the corresponding cusp e of G, by
gluing the two copies of Ge in question by means of the inversion automorphism
Ge → Ge [induced by “multiplication by −1” on the abelian fundamental group of
Ge]. We shall refer to H as the double of G. Then the following hold.

(i) H is a noncuspidal semi-graph of anabelioids of PSC-type.

(ii) Restriction of finite étale coverings of H to each of the copies of G used to
construct H determines a natural injective continuous outer homomorphism
ΠG ↪→ ΠH.

(iii) The homomorphism of (ii) maps verticial (respectively, edge-like) sub-
groups of ΠG isomorphically onto verticial (respectively, edge-like) subgroups of ΠH.

(iv) The homomorphism of (ii) induces an injection

MG ↪→MH

that maps M edge
G (respectively, Mvert

G ) into M edge
H (respectively, Mvert

H ).

Proof. Assertion (i) is immediate from the definitions. Note, relative to Definition
1.1, (i), that there is a corresponding construction of a “double” of a pointed stable
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curve. This explains the need for “gluing by means of the inversion automorphism”
in the definition of H: Over, say, a complete discrete valuation ring A with alge-
braically closed residue field, the completion of a generically smooth pointed stable
curve at a node is isomorphic to the formal spectrum of the complete local ring
A[[x, y]]/(xy − s), where x, y are indeterminates and s lies in the maximal ideal
of A. Then the action of the local tame Galois group at each of the branches of
the node considered independently is of the form x 	→ ζ · x, y 	→ ζ · y, where ζ
is some root of unity. On the other hand, since the Galois action on coverings of
the entire formal spectrum of A[[x, y]]/(xy − s) [i.e., where one does not treat the
branches of the node independently] necessarily fixes elements of the base ring [i.e.,
the normalization of A in some finite extension of its quotient field], it follows that
this action must be of the form x 	→ ζ · x, y 	→ ζ−1 · y.

As for assertion (ii), it is immediate that we obtain a natural homomorphism
ΠG → ΠH. The asserted injectivity may be verified as follows [cf. also the proof
of injectivity in [Mzk7], Proposition 2.5, (i)]: Given any finite étale ΠG-covering
G′ → G, one may construct a finite étale ΠH-covering H′ → H which induces
G′ → G via the “restriction procedure” of (ii) by gluing together two copies of G′

over the two copies of G used to construct H. Note that to carry out this gluing,
one must choose a [noncanonical!] isomorphism, at each cusp e of G, between the
restriction of G′ → G to Ge and the pull-back via the inversion automorphism of
this restriction. [Note that it is immediate that such an isomorphism always exists.]
Assertion (iii) is immediate from the construction of the double.

Finally, we consider assertion (iv). To verify that the homomorphism MG →
MH induced by the homomorphism of (ii) is an injection, it suffices to observe that
the gluing procedure discussed in the proof of the injectivity of (ii) determines a
splitting of the homomorphism MG → MH. Indeed, if the finite étale ΠG-covering
G′ → G in question is abelian, with Galois group A, then the resulting H′ → H
admits a natural action by A, by letting A act via the identity A → A on one
copy of G′ and via “multiplication by −1” A → A on the other copy of G′. [Put
another way, if we think of the covering G′ → G as corresponding to the A-set A,
then we glue the set A to the set A at the bridges by means of the automorphism
“multiplication by −1”.] This completes the proof of injectivity. The fact that this
injection maps M edge

G (respectively, Mvert
G ) into M edge

H (respectively, Mvert
H ) follows

immediately from assertion (iii). �

Remark 2.2.1. Certain aspects of Proposition 2.2 are related to the results of
[Asada].

Remark 2.2.2. It is quite possible that various aspects of Proposition 2.2 may
be generalized from the case of “two copies of G” treated in Proposition 2.2 to the
case of gluing together arbitrary finite collections of semi-graphs of anabelioids of
PSC-type. This topic, however, lies beyond the scope of the present paper.

Definition 2.3. Let J be a profinite group which acts continuously on G [i.e.,
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we are given a continuous homomorphism J → Aut(G)]. Set:

ΠJ
G

def= ΠAut
G ×Aut(G) J

Let M be a continuous Zl[J ]-module [i.e., a topological module equipped with
continuous actions by Zl, J ], where l ∈ Σ.

(i) We shall refer to a [continuous] character ψ : J → Z×
l as quasi-cyclotomic

(respectively, Q-cyclotomic) if ψ (respectively, some positive power of ψ) coincides
with the restriction to J of the character χl (respectively, some integer power of
the character χl) of Lemma 2.1 on some open subgroup J ′ ⊆ J of J . If ψ : J → Z×

l

is a [continuous] character, then we shall denote by

M(ψ)

the ψ-twist of M . That is to say, the underlying topological Zl-modules of M ,
M(ψ) are identical; if the action of γ ∈ J on M maps m ∈ M to γ ·m ∈ M , then
the action of γ ∈ J on M(ψ) maps m 	→ ψ(γ) · (γ ·m) ∈ M = M(ψ). If n ∈ Z,
then we shall write M(n) def= M((χl|J)n), where χl|J denotes the restriction of the
cyclotomic character χl of Lemma 2.1 to J . We shall say that M is quasi-trivial if
some open subgroup J ′ ⊆ J acts trivially on M . We shall say that M is quasi-toral
if M(−1) is quasi-trivial. If, for some open subgroup J ′ ⊆ J , there exists a finite
filtration of Zl[J ′]-submodules

Mn ⊆Mn−1 ⊆ . . . ⊆M j ⊆ . . . ⊆M1 ⊆M0 = M

such that each M j/M j+1 is torsion-free and, moreover, either is quasi-trivial [over
J ′] or has no quasi-trivial J ′′-subquotients for any open subgroup J ′′ ⊆ J ′, then we
shall refer to the [possibly infinite] sum

∑
Mj/Mj+1 quasi-trivial

dimQl
(M j/M j+1 ⊗ Ql)

[which is easily verified to be independent of the choice of a subgroup J ′ ⊆ J and
a filtration {M j} satisfying the above properties] as the quasi-trivial rank of M .

(ii) We shall say that [the action of] J is l-cyclotomically full if the image of
the homomorphism χl|J : J → Z×

l is open. Suppose that J is l-cyclotomically
full. Then it makes sense to speak of the weight w of a Q-cyclotomic character
ψ : J → Z×

l : i.e., w is the unique rational number that may be written in the form
2a/b, where a, b are integers such that b �= 0, ψb = (χl|J)a. If w > 0 (respectively,
w = 0; w < 0), then we shall say that ψ is positive (respectively, null; negative).
If w ∈ Q, and ψ : J → Z×

l is a Q-cyclotomic character of weight w, then we shall
refer to the quasi-trivial rank of M(ψ−1) as the l-weight w rank of M . [One verifies
immediately that the l-weight w rank is independent of the choice of ψ.] If the
l-weight w rank of M is nonzero, then we shall say that w is an associated l-weight
of M . Write

wl(M) ⊆ Q
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for the set of associated l-weights of M .

(iii) Suppose that J is l-cyclotomically full. Observe that if ΠG′ ⊆ ΠG is any
characteristic open subgroup, then ΠJ

G acts naturally on ΠG′ , hence also onMG′⊗Zl.
Set

wl(J) def=
⋃
G′

wl(MG′ ⊗ Zl)

[where the union ranges over characteristic open subgroups ΠG′ ⊆ ΠG ]. We shall
refer to wl(J) as the set of associated l-weights of [the action of] J . If every w ∈
wl(J) satisfies 0 ≤ w ≤ 2, then we shall say that [the action of] J is weakly l-
graphically full. If, for every characteristic open subgroup ΠG′ ⊆ ΠG , it holds that

wl((M
vert
G′ /M edge

G′ ) ⊗ Zl) ⊆ (0, 2)Q
def= {w ∈ Q | 0 < w < 2}

then we shall say that [the action of] J is l-graphically full. [Thus, “J l-graphically
full” implies “J weakly l-graphically full” — cf. Proposition 2.4, (i), (ii), below.]

Remark 2.3.1. The purpose of the introduction of the notion “l-cyclotomically
full” is to allow us to describe, in compact form, that situation in which it makes
sense to speak of “weights” in a fashion similar to the case where the action of
J arises from scheme theory. Once it makes sense to speak of “weights”, one
may introduce the notion of “l-graphically full” (respectively, “weakly l-graphically
full”), which asserts, in essence, that the weights behave as one would expect in the
case of precisely one (respectively, at least one, i.e., possibly two nested, as in the
situations of Corollaries 2.8, 2.10 below) degeneration(s) of the hypothetical family
of hyperbolic curves under consideration.

Proposition 2.4. (Quasi-triviality and Quasi-torality) Let J be as in
Definition 2.3; l ∈ Σ. Write m(G) for the rank [over ẐΣ] of the finitely generated,
free ẐΣ-module MG. Then the following hold.

(i) (MG/Mvert
G ) ⊗ Zl is quasi-trivial.

(ii) M cusp
G ⊗Zl, M

edge
G ⊗Zl are quasi-toral. In particular, if J is l-cyclotomi-

cally full, and 2 �∈ wl(J), then the submodule M edge
G ⊗ Zl ⊆MG ⊗ Zl is zero.

(iii) Assume that G is sturdy. Then there exists a positive integer m ≤ 2m(G)
such that det(MG ⊗ Zl)⊗2(−m) is quasi-trivial.

(iv) Assume that G is sturdy. Then a character ψ : J → Z×
l is Q-cyclotomic

if and only if it admits a positive power that coincides with the aψ-th power of
the character obtained by the natural action of J on det(MG ⊗ Zl)⊗2, for some
aψ ∈ Z. Suppose further that J is l-cyclotomically full. Then a Q-cyclotomic
ψ is positive (respectively, null; negative) if and only if aψ may be taken to
be positive (respectively, zero; negative). Finally, any two Q-cyclotomic characters
J → Z×

l of the same weight necessarily coincide on some open subgroup J ′ ⊆ J .
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(v) Assume that the image of J in Aut(G) is open. Then J is l-graphically
full.

(vi) Assume that J is l-cyclotomically full. Then 2 �= w ∈ wl(J) implies
2 − w ∈ wl(J). If, moreover, G is noncuspidal, then w ∈ wl(J) implies 2 − w ∈
wl(J).

(vii) Assume that J is l-cyclotomically full, and that G has cusps [i.e., that
ΠG is free — cf. Remark 1.1.3]. Then for every sufficiently small open subgroup
ΠG′ ⊆ ΠG, the subset

{0}
⋃
wl(MG′ ⊗ Zl) ⊆ Q

is invariant with respect to the automorphism λ 	→ 2 − λ of Q; in particular, the
sum of the maximum and minimum elements of this [finite] subset is equal to
2.

(viii) Assume that J is l-graphically full. Then M edge
G ⊗ Zl ⊆ MG ⊗ Zl is

the maximal quasi-toral Zl[J ]-submodule of MG ⊗ Zl.

(ix) Assume that J is l-graphically full. Then MG ⊗Zl � (MG/Mvert
G )⊗Zl

is the maximal torsion-free quasi-trivial Zl[J ]-quotient module of MG⊗Zl.

Proof. Assertion (i) follows immediately from Remarks 1.1.3, 1.1.4. Now when G is
noncuspidal, assertion (ii) follows from assertion (i); Proposition 1.3. For arbitrary
G, assertion (ii) follows from assertion (ii) in the noncuspidal case, together with
Proposition 2.2, (iv). Assertion (iii) follows immediately from assertion (ii) [applied
toM cusp

G ⊗Zl]; Proposition 1.3 [applied to (MG/M
cusp
G )⊗Zl, which is possible in light

of the sturdiness assumption — cf. Remark 1.1.6]. Assertion (iv) follows formally
from assertion (iii); the definitions; the fact that Z×

l contains a torsion-free open
subgroup.

To verify assertion (v), it suffices to consider the case where G arises from a
pointed stable curve over a finite field k [cf. the proof of Proposition 1.3], and J
is equal to an open subgroup of Aut(G). Then assertion (v) follows from the fact
that [in the notation and terminology of loc. cit.] the action of Gk on Mvert

G /M edge
G

is of weight 1. Assertion (vi) follows from assertion (ii); Proposition 1.3, applied to
the compactification [cf. Remark 1.1.6] of a sturdy finite étale ΠG-covering of G.

Next, we consider assertion (vii). Suppose that ΠG′ ⊆ ΠG is an open subgroup
such that r(G′) ≥ 2. Thus, M cusp

G′ �= 0 [cf. Remark 1.3.1], so [by assertion (ii)]

0, 2 ∈ EG′
def= {0}⋃

wl(MG′ ⊗ Zl). Thus, if we set E′
G′

def= wl(M
vert
G′ /M edge

G′ ⊗ Zl),
then [by assertions, (i), (ii)], it follows that EG′ = {0, 2}⋃

E′
G′ . Moreover, by

Proposition 1.3 [applied to the compactification [cf. Remark 1.1.6] of G], E′
G′ is

invariant with respect to the automorphism λ 	→ 2 − λ of Q. But this implies the
desired invariance of EG′ with respect to this automorphism of Q. This completes
the proof of assertion (vii). Finally, assertions (viii), (ix) follow immediately from
assertions (i), (ii); the definitions. �
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Example 2.5. Stable Log Curves over a Logarithmic Point. Let Slog

be a log scheme, with underlying scheme S def= Spec(k), where k is a field, and log
structure given by a chart N � 1 	→ 0 ∈ k [cf. the theory of [Kato]]. Let

X log → Slog

be a stable log curve over Slog [cf. §0]. Let T log → Slog be a “separable closure”
of Slog, i.e., the underlying scheme T of T log is of the form T = Spec(k), where k
is a separable closure of k; the log structure of T log is given by a chart M � 1 	→
0 ∈ k, where M ⊆ Q is the monoid of positive rational numbers with denominators
invertible in k; the morphism T log → Slog arises from the natural maps k ↪→ k,
N ↪→ M. Thus, if we write Gklog

def= Aut(T log/Slog), then we have a natural exact
sequence

1 → Iklog → Gklog → Gk → 1

where Gk
def= Gal(k/k); Iklog

def= Hom(Q/Z, k
×

). Now the admissible coverings of
X log [with tame ramification at the cusps] determine an admissible fundamental
group ΠXlog which fits into a natural exact sequence:

1 → ΔXlog → ΠXlog → Gklog → 1

[The theory of admissible coverings is discussed in detail in [Mzk1], §3; [Mzk2], §2;
[Mzk4], §2; [Mzk4], Appendix. It follows, in particular, from this theory that, if
one chooses a lifting of X log → Slog to some generically smooth stable log curve

X log
lift → Slog

lift

— where Slift is the spectrum of a complete discrete valuation ring with residue
field k; the log structure on Slog

lift is the log structure determined by the monoid
of generically invertible functions — then the coverings arising from ΠXlog may
be realized as coverings of the generically smooth curve X log

lift that satisfy certain
properties.] Moreover, if Σ is a set of primes that does not contain the residue
characteristic of k, and we denote by G the semi-graph of anabelioids of pro-Σ
PSC-type arising from the pointed stable curve over k determined by X log, then
the maximal pro-Σ quotient of ΔXlog may be naturally identified with the PSC-
fundamental group ΠG . In particular, one obtains a natural outer action of Gklog

on ΠG, the automorphisms of which are easily seen [by the functoriality of the
various fundamental groups involved!] to be graphic. That is to say, we obtain
continuous homomorphisms as follows:

Gklog → Aut(G) ∼= Outgrph(ΠG) ⊆ Out(ΠG)

Now suppose that H ⊆ Gklog is a closed subgroup such that the restriction to H of
the homomorphism Gklog → Aut(G) factors through some quotient H � J :

H � J → Aut(G)

For l ∈ Σ, we shall refer to the image in J of the intersection of H with the pro-l
component of Iklog as the l-inertia subgroup of J ; we shall say that [the action
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on G of] J is l-logarithmically full if the l-inertia subgroup of J is infinite [hence
isomorphic to Zl(1)]. If H is an open subgroup Gklog , then we shall say that [the
action on G of] J is arithmetically full and refer to k as the base field.

Remark 2.5.1. Note that from the point of view of Example 2.5, one may think
of the action of Gk on G appearing in the proof of Proposition 1.3 as the restriction
of the action of Gklog on G discussed in Example 2.5 to some section of Gklog � Gk.

Proposition 2.6. (The Logarithmic Inertia Action) In the notation of
Example 2.5, Iklog acts quasi-unipotently [i.e., an open subgroup of Iklog acts
unipotently] on MG ⊗ Zl, and, moreover, the submodule

Mvert
G ⊗ Zl ⊆MG ⊗ Zl

is the maximal quasi-trivial Zl[Iklog ]-submodule of MG ⊗Zl [i.e., the maximal
submodule on which some open subgroup of Iklog acts trivially].

Proof. Let us first observe that if G is noncuspidal, then the asserted quasi-
unipotency (respectively, quasi-triviality) of the action of Iklog on MG ⊗ Zl (re-
spectively, Mvert

G ⊗ Zl) follows immediately from the well-known theory of Galois
actions on torsion points of degenerating abelian varieties [cf., e.g., [FC], Chapter
III, Corollary 7.3; here, we note that, in the terminology of loc. cit., the submodule
Mvert

G ⊗Zl corresponds to the submodule determined by the “Raynaud extension”].
Thus, one obtains the asserted quasi-unipotency/quasi-triviality in the case of not
necessarily noncuspidal G by applying the theory of the “double” [cf. Proposition
2.2, (iv)]. Now it remains to prove the asserted maximality. But this follows again
from [FC], Chapter III, Corollary 7.3 [i.e., the fact that the period matrix of a
degenerating abelian variety is always nondegenerate]. �

Now, by combining Theorem 1.6 with the theory of the present §2 [cf., in
particular, Proposition 2.4], we obtain the following result.

Corollary 2.7. (Graphicity) Let G, H be semi-graphs of anabelioids of
pro-Σ PSC-type; JG → Aut(G), JH → Aut(H) continuous homomorphisms.
Suppose, moreover, that we have been given isomorphisms of profinite groups

α : ΠG
∼→ ΠH; ι : JG

∼→ JH

which are compatible, with respect to the respective outer actions of JG, JH on
ΠG, ΠH. Then, for l ∈ Σ:

(i) Suppose that the respective actions of JG, JH on G, H are l-cyclotomically
full. Then α is group-theoretically cuspidal.

(ii) Suppose that the respective actions of JG , JH on G, H are l-graphically
full [cf., e.g., Proposition 2.4, (v)]. Then α is graphic.
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(iii) Suppose that the respective actions of JG, JH on G, H arise from data
as in Example 2.5; that G, H are noncuspidal; and that, in the terminology of
Example 2.5, these actions are l-logarithmically full, and, moreover, ι maps the
l-inertia subgroup of JG isomorphically onto that of JH. Then α is graphic.

(iv) Outgrph(ΠG) is commensurably terminal in Out(ΠG).

Proof. First, we consider assertion (i). By Theorem 1.6, (i), it suffices to prove that
α is numerically cuspidal, under the further assumption that G, H have cusps [i.e.,
that ΠG , ΠH are free — cf. Remark 1.1.3]. By passing to sturdy finite étale coverings
of G, H that correspond via α [cf. Remark 1.1.5], it follows from Proposition 2.4,
(iv), that ι preserves positive and null Q-cyclotomic characters to Z×

l . Thus, by
Proposition 2.4, (vii), it follows that ι preserves the Q-cyclotomic characters to Z×

l

of weight 2. Now, by applying Proposition 1.3 to the compactifications [cf. Remark
1.1.6] of sturdy finite étale coverings G′ → G, H′ → H that correspond via α [cf.
Remark 1.1.5], we conclude that the rank of M cusp

G′ (respectively, M cusp
H′ ) may be

computed as the difference between the l-weight 2 and l-weight 0 ranks of MG′

(respectively, MH′) [cf. Proposition 2.4, (ii); Remark 1.3.1]; moreover, [cf. Remark
1.3.1] this data allows one to compute r(G′) (respectively, r(H′)). This completes
the proof of assertion (i).

Next, we consider assertion (ii). By assertion (i), it follows that α is group-
theoretically cuspidal. Thus, by replacing G, H by the compactifications [cf. Remark
1.1.6] of sturdy finite étale coverings of G, H that correspond via α [cf. Remark
1.1.5], we may assume without loss of generality that G, H are noncuspidal. Thus,
by Theorem 1.6, (ii); Remark 1.4.1, it suffices to prove that α is verticially filtration-
preserving. But this follows from Proposition 2.4, (ix). This completes the proof of
assertion (ii). Assertion (iv) follows formally from assertion (ii) [by taking H def= G;
JG , JH to be open subgroups of Outgrph(ΠG) — cf. Proposition 2.4, (v)].

Finally, we consider assertion (iii). By Theorem 1.6, (ii); Remark 1.4.1, it
suffices to prove that α is verticially filtration-preserving. But this follows from
Proposition 2.6 and the assumptions concerning the l-inertia subgroups. This com-
pletes the proof of assertion (iii). �

Remark 2.7.1. Corollary 2.7, (iv), may be regarded as a sort of anabelian
analogue of the well-known linear algebra fact that, if k is an algebraically closed
field, then parabolic subgroups of the general linear group GLn(k), where n ≥ 2 —
e.g., the subgroups that preserve some filtration of a k-vector space of dimension n
— are normally terminal in GLn(k) [cf., e.g., [Hum], p. 179].

Remark 2.7.2. Note that the group-theoretic cuspidality of [Mzk4], Lemma 1.3.9
(respectively, the graphicity of [Mzk4], Lemma 2.3) may be regarded as a [rather
weak] special case of Corollary 2.7, (i) (respectively, Corollary 2.7, (ii)) — cf. the
proof of Proposition 2.4, (v), above.

Corollary 2.8. (Graphicity over an Arithmetic Logarithmic Point) Let
G, H be semi-graphs of anabelioids of pro-Σ PSC-type; JG → Aut(G), JH →
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Aut(H) continuous homomorphisms that arise from data as in Example 2.5 such
that [in the terminology of Example 2.5] the resulting actions are l-logarithmically
full, for some l ∈ Σ, and arithmetically full, with base field isomorphic to
a subfield of a finitely generated extension of Fp or Qp, for some prime p �∈ Σ
[where we allow p to differ for G, H]. Suppose, moreover, that we have been given
isomorphisms of profinite groups

α : ΠG
∼→ ΠH; ι : JG

∼→ JH

which are compatible, with respect to the respective outer actions of JG, JH on
ΠG, ΠH, and satisfy the property that ι maps the l-inertia subgroup of JG iso-
morphically onto that of JH. Then the respective actions of JG, JH on G, H are
weakly l-graphically full, and α is graphic.

Proof. Indeed, by using the Frobenius elements of the Galois group of a finitely
generated extension of Fp or Qp containing the base field in question [cf. the proof
of Proposition 2.4, (v)], one obtains that JG , JH are weakly l-graphically full. [Note
that, unlike the situation in the proof of Proposition 2.4, (v), the pointed stable
curve over a finite field that one uses here to conclude weak l-graphic fullness will,
in general, be a degeneration of the original pointed stable curve over the base
field appearing in Example 2.5. This is the reason why [unlike the situation in
the proof of Proposition 2.4, (v)] in the present context, one may only conclude
weak l-graphic fullness.] By Corollary 2.7, (i), we thus conclude that α is group-
theoretically cuspidal. Moreover, this allows us [by passing to compactifications of
sturdy finite étale coverings] to reduce to the noncuspidal case, hence to conclude
that α is graphic by Corollary 2.7, (iii). �

Remark 2.8.1. In the situation of Corollary 2.8, suppose further that the base
field in question is sub-p-adic [i.e., isomorphic to a subfield of a finitely generated
extension of Qp], and that ι lies over an isomorphism between the absolute Galois
groups of the respective base fields that arises from an isomorphism between the
respective base fields. Then one may apply the main result of [Mzk3] — just as the
main result of [Tama1] was applied in [Mzk2], §7 — to the various verticial subgroups
to obtain a version of the Grothendieck conjecture for pointed stable curves over a
sub-p-adic field. Note that in this situation, when Σ is the set of all primes, one may
also reconstruct the log structures at the nodes by considering the decomposition
groups at the nodes [cf. the theory of [Mzk2], §6]. We leave the routine details to
the interested reader.

Remark 2.8.2. In the situation of Corollary 2.8, suppose further that the base
field in question is a finite extension of Qp [which may differ for G, H], and that
Σ is the set of all primes. Then observe that it follows from [Mzk4], Lemma 1.1.4,
(ii), that ι lies over an isomorphism between the absolute Galois groups of the re-
spective base fields [that does not necessarily arise from an isomorphism between
the respective base fields!]. Now suppose further that the hyperbolic curve consti-
tuted by [the complement of the nodes and cusps in] each irreducible component
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of the pointed stable curves over the respective base fields that give rise to the
data in question is isogenous [cf. §0] to a hyperbolic curve of genus zero. Then
it follows from the theory of [Mzk6], §4 — more precisely, the “rigidity” of the
cuspidal edge-like subgroups implied by [Mzk6], Theorem 4.3, together with the
integral absoluteness of [Mzk6], Corollary 4.11 — that one may reconstruct the log
structures at the nodes by considering the decomposition groups at the nodes [cf.
the theory of [Mzk2], §6]. We leave the routine details to the interested reader.

Corollary 2.9. (Unramified Graphicity) Let G, H be sturdy semi-graphs
of anabelioids of pro-Σ PSC-type; JG → Aut(G), JH → Aut(H) continu-
ous homomorphisms which determine l-graphically full actions, for some l ∈ Σ.
Suppose, moreover, that we have been given factorizations

JG � J ′
G → Out(Πunr

G ); JH � J ′
H → Out(Πunr

H )

[where the composite homomorphisms are the natural homomorphisms; the first ar-
row of each factorization is a surjection], together with isomorphisms of profinite
groups

β : Πunr
G

∼→ Πunr
H ; ι′ : J ′

G
∼→ J ′

H

which are compatible, with respect to the respective outer actions of J ′
G, J ′

H on
Πunr

G , Πunr
H . Then β is group-theoretically verticial.

Proof. By Theorem 1.6, (iii), it suffices to prove that α is verticially filtration-
preserving. But this follows from Proposition 2.4, (ix). �

Remark 2.9.1. Note that the group-theoretic verticiality of [Mzk2], Proposition
1.4 may be regarded as a [rather weak] special case of Corollary 2.9 — cf. the proof
of Proposition 2.4, (v), above.

Finally, we observe the following consequence of the theory of the present paper
concerning anabelian geometry over finite extensions of the quotient field of the ring
of Witt vectors of an algebraic closure of a finite field.

Corollary 2.10. (Inertia Action in the Case of Two Primes) For i = 1, 2,
let Ki be a finite extension of the quotient field of the ring of Witt vectors W (Fpi

)
with coefficients in an algebraic closure Fpi

of the finite field of cardinality pi, where

pi is a prime number; Ki an algebraic closure of Ki; Gi
def= Gal(Ki/Ki); Xi a hy-

perbolic curve over Ki whose corresponding stable log curve extends to a stable
log curve X log

i over the spectrum of the ring of integers OKi
of Ki [equipped with

the log structure determined by the closed point of Spec(OKi
)]; Σ a set of prime

numbers such that pi ∈ Σ; Δi the maximal pro-Σ quotient of the étale funda-
mental group of (Xi) ×Ki

Ki [so Δi may be regarded as the profinite fundamental
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group of a semi-graph of anabelioids Gi of pro-Σ PSC-type with precisely one vertex
and no closed edges];

αG : G1
∼→ G2; αΔ : Δ1

∼→ Δ2

a pair of isomorphisms of profinite groups that are compatible with the nat-
ural outer action of Gi on Δi. Then the following hold.

(i) We have p1 = p2 [so we shall write p def= p1 = p2]; for i = 1, 2, the action of
Gi on Gi is weakly p-graphically full; αΔ is group-theoretically cuspidal.

(ii) Suppose that the cardinality of Σ is ≥ 2. Then αΔ induces a functorial
[i.e., with respect to the pair (αG, αΔ)] isomorphism of the “dual semi-graphs
with compact structure” [cf. [Mzk4], Appendix] of the special fibers of the X log

i .

(iii) Suppose that the cardinality of Σ is ≥ 2. Write πtemp
1 ((Xi) ×Ki

Ki)
for the tempered fundamental group of [André], §4 [cf. also [Mzk7], Examples
3.10, 5.6];

Δtemp
i

def= lim←−
N

πtemp
1 ((Xi) ×Ki

Ki)/N

for the “Σ-tempered fundamental group” — i.e., the inverse limit where N
varies over the open normal subgroups of πtemp

1 ((Xi)×Ki
Ki) such that the quotient

πtemp
1 ((Xi)×Ki

Ki)/N is an extension of a finite group whose order is a product
of primes ∈ Σ by a discrete free group. [Here, we recall that such a discrete
free group corresponds to a “combinatorial covering” determined by the graph of the
special fiber of some stable reduction of a covering of Xi — cf. [André], Proposition
4.3.1; [André], the proof of Lemma 6.1.1.] Thus, we have a natural continuous outer
action of Gi on Δtemp

i ; Δi is the pro-Σ completion of Δtemp
i . Then the operation

of pro-Σ completion determines a surjection from the set of compatible pairs
of isomorphisms of topological groups

βG : G1
∼→ G2; βΔtemp : Δtemp

1
∼→ Δtemp

2

considered up to inner automorphisms of the Δtemp
i to the set of compatible pairs

of isomorphisms of topological groups

γG : G1
∼→ G2; γΔ : Δ1

∼→ Δ2

considered up to inner automorphisms of the Δi.

Proof. First, we consider assertion (i). Since [as is well-known] Gi is an extension
of an abelian profinite group by a nonabelian pro-pi group, it follows that pi may
be characterized as the unique prime number p′ such that Gi contains a nonabelian
pro-p′ closed subgroup. Thus, the existence of αG implies that p1 = p2; write
p

def= p1 = p2. Now since the tensor product with Qp of the abelianization of
any open subgroup of Δi admits a filtration [cf., e.g., [FC], Chapter III, Corollary
7.3] each of whose subquotients is Hodge-Tate [relative to the action of some open
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subgroup of Gi], with Hodge-Tate decomposition only involving “Tate twists” by
the zero-th or first power of the cyclotomic character [cf. [Tate], §4, Corollary 2],
it follows that Gi is [relative to its outer action on Δi] weakly p-graphically full.
Thus, the remainder of assertion (i) follows from Corollary 2.7, (i).

Next, we consider assertion (ii). Let l ∈ Σ be distinct from p
def= p1 = p2. Write

Δi � Δ(l)
i for the maximal pro-l quotient of Δi. Since the subgroup of Out(Δ(l)

i )
that induces the identity on the tensor product with Fl of the abelianization of Δ(l)

i

is [easily seen to be] a pro-l group, it follows that by replacing Gi by an open sub-
group of Gi, we may assume that the natural map Gi → Out(Δ(l)

i ) factors through
the maximal pro-l quotient Gi � G

(l)
i of Gi. Thus, the data given by the outer

action of G(l)
i on Δ(l)

i is l-logarithmically full data of the type considered in Exam-
ple 2.5. In particular, in the noncuspidal case, assertion (ii) follows immediately
from Corollary 2.7, (iii). On the other hand, even if we are not in the noncuspidal
case, by passing to compactifications of sturdy finite étale coverings of the Xi and
applying the fact that a cuspidal edge-like subgroup belongs to a unique verticial
subgroup [cf. Proposition 1.5, (i)], we reduce immediately [via assertion (i)] to the
noncuspidal case. This completes the proof of assertion (ii).

Finally, we observe that assertion (iii) follows formally from assertion (ii) via
the same argument applied [in the case where Σ is the set of all primes, and the
base fields are finite extensions of Qp] in the proof of [Mzk7], Theorem 6.6, to derive
the “surjectivity portion” of [Mzk7], Theorem 6.6, from [Mzk4], Lemma 2.3. �

Remark 2.10.1. Since free discrete groups inject into their pro-Σ completions
[cf. [RZ], Proposition 3.3.15], the natural map Δtemp

i → Δi is injective [cf. the
proof of [Mzk7], Corollary 3.11]. On the other hand, unlike the situation of [Mzk7],
Theorem 6.6, we are unable to conclude that the surjection of Corollary 2.10, (iii),
is a bijection since [unlike the profinite case — cf. [André], Corollary 6.2.2] it is not
clear that the [image in Δi of] Δtemp

i is equal to its own normalizer in Δi.
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[André] Y. André, On a geometric description of Gal(Qp/Qp) and a p-adic avatar of
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